Preventing Microbial Contamination during Long-Term In Vitro Culture of Human Granulosa-Lutein Cells: An Ultrastructural Analysis

نویسندگان

  • C. O. Campos
  • M. P. Bernuci
  • A. A. Vireque
  • J. R. Campos
  • M. F. Silva-de-Sá
  • M. C. Jamur
  • A. C. J. S. Rosa-e-Silva
چکیده

Purpose. To investigate whether the addition of antibiotic/antimycotic during human granulosa-lutein cells (GLCs) isolation and cell-plating procedures prevents microbial contamination after 144 h of culture and also evaluate the effects of contamination on GLCs ultrastructure and steroid secretion. Methods. GLCs obtained from five women submitted to assisted reproductive techniques (ARTs) were isolated with PBS supplemented with antibiotic/antimycotic or PBS nonsupplemented and cultured for 144 h. GLCs were evaluated by transmission electron microscopy (TEM), and estradiol (E2) and progesterone (P4) secretion was assayed by chemiluminescence. Results. Although no contaminating microorganisms were identified by light microscopy, TEM analyses revealed several bacterial colonies in culture dishes of GLCs isolated with only PBS. Bacterial contamination disrupted the adherence of the GLCs to the culture plate interfering with monolayer formation affecting the growth pattern of GLCs. Various cellular debris and bacteria were observed, and no organelles were found in the cytoplasm of infected cells. While bacterial contamination decreased estradiol media levels, it increased progesterone, as compared with noncontaminated group. Conclusion. Taken together, our data showed that the addition of a high dose of antibiotic/antimycotic during the isolation and cell-plating procedures prevents microbial contamination of long-term GLCs culture as its effects on cells growth and function in vitro.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oestradiol production by luteinized human granulosa cells: evidence of the stimulatory action of recombinant human follicle stimulating hormone.

In this study the effect of recombinant human follicle stimulating hormone (rFSH) on oestradiol production by human granulosa-lutein cells was examined in long-term culture, in the presence or absence of androgens. Cells were harvested at the time of follicular aspiration after ovarian hyperstimulation for in-vitro fertilization and cultured for 9 days. Granulosa cells were capable of secreting...

متن کامل

I-16: Assessment of The Vitrified Ovarian Tissue in Long Term Culture

In vitro culture of human ovarian tissue the following cryopreservation is proposed for follicular development. There are no techniques that guarantee successful maturation of the follicles within the excised tissue. The viability of cultured human ovarian tissue improved by adding some growth factors to the culture media. The efficiency of vitrification as the cryopreservation method for human...

متن کامل

Assessment of Culture Condition and In Vitro Colonization Ability of Human Spermatogonial Stem Cells: A Review Article

Spermatogenesis is a highly complex and regulated process in which germ stem cells differentiate into spermatozoa. These stem cells, called spermatogonial stem cells (SSCs), are in the base of seminiferous tubules and have the ability of self-renewal and differentiation into functional germ cells. Due to this ability, SSCs can restore spermatogenesis after testicular damage caused by cytotoxic ...

متن کامل

Effect of Ghrelin on Viability, Proliferation, and Apoptosis in Human Granulosa Cells, In Vitro

Background and Objectives: Ghrelin is a peptide hormone that was initially derived from stomach and introduced as an endogenous ligand for the growth hormone secretagogue receptor. Ghrelin is fundamentally involved in regulation of nutrition and energy homeostasis in the body. It has been shown that ghrelin has an important role in fertility in women. The purpose of the present study was to ass...

متن کامل

I-5: Multicellular Human Testicular Organoid: A Novel 3D In Vitro Germ Cell and Testicular Toxicity Model

Background Background: Mammalian spermatogenesis is regulated through paracrine and endocrine activity, specific cell signaling, and local control mechanisms. These highly specific signaling interactions are effectively absent upon placing testicular cells into two-dimensional primary culture. The specific changes that occur between key cell types and involved spermatogenesis signaling pathways...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012